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Abstract 
A realistic model of reservoir fluid samples is essential before conducting res-
ervoir simulations, especially for gas condensate reservoirs. Errors in PVT mod-
eling typically stem from three main sources: fluid sampling, fluid property meas-
urement, and fluid model construction. This work presents a rapid method for 
constructing a more realistic PVT fluid model before tuning. Three fluid sam-
ples from different Iranian gas condensate reservoirs were selected to achieve 
this. A suitable equation of state (EOS) and appropriate correlations for key 
factors like critical pressure, temperature, acentric factor, and binary interac-
tion coefficients were chosen using sensitivity and risk analysis techniques. The 
optimal default selection of a PVT model produces a representative model of 
the real fluid sample with minimal variation in variables when matching labor-
atory data. This approach is applicable to various PVT modeling packages. Be-
fore model optimization, a base model is selected based on literature and expe-
rience. The sensitivity and risk analysis technique uses the residual mean square 
(RMS) error as the objective function. The results of this work indicate that 
a significant number of models constructed using the derivative method had 
lower RMS errors compared to the base model. The risk analysis technique is 
shown to provide the best default selection for the PVT fluid model. While some 
approaches in the literature recommend using specific EOS and correlations 
for gas condensate samples, the results of this work show that the interaction 
effect of PVT model variables leads to the best combination of EOS and cor-
relations for each PVT sample. This approach can be extended to improve the 
PVT modeling process. 
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1. Introduction 

Gas condensate field development planning requires compositional simulation 
studies to appraise gas and condensate reserves, production methods, and surface 
facilities design [1] [2]. Determining PVT properties is crucial for all reservoirs 
but plays an especially vital role in gas-condensate reservoirs. For instance, con-
densate/gas ratio plays a major role in estimates for the sales potential of both gas 
and liquid. In fact, it is central to our understanding of gas condensate reservoirs. 
EOS-based fluid modeling involves several critical steps, including optimal com-
ponent selection by means of C7+ characterization, incorporating robust phase equi-
librium calculations and solution techniques to ensure convergence, and a rigor-
ous regression method to tune the model to laboratory data [3] [4]. Incorrect de-
fault PVT model suggestions prior to tuning, the last step can be time-consuming 
and often frustrating. The tuning or regression of the EOS parameters should be 
performed if the EOS model does not match fluid properties from experimental 
data. Tuning requires trial and error in setting regression parameters and data weight 
factors [5]. To construct a tuned model, various PVT software products have been 
developed [6]. Choosing default equations and correlations before tuning is the 
common step of all software packages. Afterward, automatic or manual adjustments 
of EOS parameters can be performed [7]. 

The choice of which model to use as a default before manual or automatic tun-
ing depends on fluid type and condition. Research to date has focused on suggest-
ing correlations for special conditions rather than offering a unique method. Some 
approaches recommend using specific EOS and the correlations for gas condensate 
samples. For example, the Modified Redlich-Kwong-Soave may be better for flu-
ids such as black, low and medium volatility oils and lean gases far from the critical 
point. The Peng-Robinson EOS is preferred for highly volatile oils or liquid-rich 
gas condensates nearer the critical point. It may be necessary to use more than one 
model. For instance, the Modified Redlich-Kwong-Soave EOS generally gives poor 
density predictions. Sometimes, the Benedict-Webb-Rubin-Starling equation is used 
to calculate densities [8]. These findings might have been much more convincing 
if they resulted from a unique approach. 

Recent software developments in PVT have heightened the need for a unique 
method to initialize model tuning. In this paper, we propose a much more sys-
tematic approach to identify the best equation of state (EOS) and correlations for 
constructing an appropriate representative model (default model) with minimal 
variable variation, ultimately improving the process of tuning to laboratory data. 
The primary purpose of this research is to enhance the accuracy and efficiency of 
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PVT modeling by optimizing parameter selection and providing a clear frame-
work for model initialization, thereby facilitating better predictions and insights 
into reservoir behavior. 

2. Problem Definition 

The main objective of this paper is to determine the best default selection of PVT 
fluid model before utilization of tuning process (Figures 1 (a)-(c)). Generally, to 
match the observed data, two steps should be taken. First, robust equations and 
correlations are selected as a default (physical part). Most of the existing software 
packages offer unique correlations for any kind of PVT data. Second, based on sug-
gested equations, the tuning process is conducted. As shown in Figure 1(c), using 
an improper default model leads to a severe and time-consuming tuning process. 

 

 
Figure 1. Relative contribution of default model selection process (blue) and regression (orange) process to 
match observed data. 

 
Throughout the life of a hydrocarbon reservoir, from discovery to abandonment, 

a great number of decisions depend on incomplete and uncertain information [9]. 
The novelty of the study is choosing the best default composed of correlations for 
different PVT parameters based on PVT samples to mitigate uncertainty. Then, PVT 
equation of state, critical properties, acentric factor and binary interaction coeffi-
cients are introduced as uncertain parameters to construct default PVT model con-
sidering PVT sample. Combination of all PVT correlations to select the best PVT de-
fault is not reasonable due to vast run and consequently, it is a time-consuming pro-
cess. So, it is necessary to propose a novel workflow in which the PVT default will 
be chosen rapidly by minimum run for each PVT sample. 

3. Proposed Workflow 

PVT modeling of conventional default (software suggestion) is performed as a base 
run. Next, sensitivity analysis to distinguish the most effective parameters on re-
sidual mean square (RMS) is implemented. The sensitivities are then used to mod-
ify the unknown model parameters to correlate the predicted data. On completion 
of PVT correlation combination step, the process of default model specification and 
parameter estimation was carried out. The workflow was tested in three PVT mod-
els of gas condensate. Proposed workflow is shown in Figure 2. 
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Figure 2. Proposed algorithm for determination of default PVT model before tuning. 

3.1. Conventional Default PVT Modeling 

All the available software packages offer default equations and parameters based 
on literature and developer’s viewpoints. As mentioned before, some approaches in 
literature recommend using specific EOS and correlations for specified fluid type. 
Although these suggestions may be appropriate in some cases, it is not possible to 
consider them as a general rule. 

3.2. Sensitivity Analysis 

Sensitivity analyses are performed to evaluate the gradients of the error functions 
with respect to the model parameters used in the analysis. It quantifies the uncer-
tainty in a model’s estimates by analyzing variations in the model’s parameters. 
Thus, sensitivity analyses can be used to reduce time of analysis. Efficient param-
eter selection is crucial for reducing computational costs while ensuring accurate 
results because it minimizes the dimensionality of the model, enhances the conver-
gence of numerical algorithms, and optimizes resource usage. By focusing on the 
most influential parameters through sensitivity analysis, we can streamline compu-
tations and improve model performance. 

3.3. Risk Analysis 

Petroleum industry is a classic case of decision-making under uncertainty; it pro-
vides an ideal setting for the investigation of risk corporate behavior and its effects 
on the firm’s performance [10]. The decision tree analysis technique for making 
decisions in the presence of uncertainty can be applied to many different project 
management situations. A decision tree is a decision support tool used in opera-
tional research. It helps with decision-making regarding strategies and managing 
conditional probabilities. Decision trees are a part of the decision theory approach 
widely used by decision makers while dealing with few possible solutions. Decision 
trees are diagrams that can be used to represent decision problems so that their struc-
ture is made clearer. 

Figure 3 shows a decision tree to calculate RMS for Peng Robinson EOS. Unlike 
decision tables, decision trees can represent problems with sequential decision-mak-
ing, where decisions must be made at different stages in the problem. Decision trees 
constitute a potent and important tool for modeling and optimization of probabil-
istic multistage decision-making problems. 

4. Result 

The proposed workflow was applied to three gas condensate PVT models. Table 1 
compares the composition of three Iranian gas condensates. After implementation  
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Figure 3. Decision tree for calculation of RMS for Peng Robinson equation of state. 
 

Table 1. Compositions of three Iranian gas condensate samples. 

Sample one 

Component Mole Fraction 

H2S 0.0394 

N2 0.1086 

CO2 0.0238 

C1 0.6643 

C2 0.0650 

C3 0.0281 

IC4 0.0052 

NC4 0.0103 

IC5 0.0032 

NC5 0.0034 

C6 0.0057 

C7 0.0086 

C8 0.0090 

C9 0.0068 

C10 0.0045 

C11 0.0020 

C12+ 0.0121 

Sample two 

Component Mole Fraction 

N2 0.02104 

CO2 0.00179 
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Continued 

C1 0.82174 

C2 0.06308 

C3 0.03438 

IC4 0.00536 

NC4 0.01309 

IC5 0.00439 

NC5 0.00454 

C6 0.00587 

C7 0.00461 

C8 0.00399 

C9 0.00350 

C10 0.00240 

C11 0.00212 

C12 0.00137 

C13 0.00127 

C14 0.00103 

C15 0.00087 

C16+ 0.00356 

Sample three 

Component Mole Fraction 

CO2 0.0217 

N2 0.0034 

H2S 0.0000 

C1 0.7064 

C2 0.1076 

C3 0.0494 

NC4 0.0302 

NC5 0.0135 

C6 0.0090 

C7+ 0.0588 

of sensitivity analysis and combination of uncertain parameters for each sample, 
the best default correlation was selected. In the following, the results of three sam-
ples are explained. 

4.1. Fluid Sample One 

Table 2 shows the results obtained from the sensitivity analysis. As it can be seen, 
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change of EOS has the most effect on RMS for this sample. Figure 4 is used to de-
termine the most effective parameter for Sample 1. ZJ, RK and PR3 EOS, Crit. Prop.-
RD, Crit. Pro.-RD and C, Acentric Prop.-T and E have the minimum RMS in their 
category. 

 
Table 2. Sensitivity analysis of Sample one. 

Sample one 

 EOS 
Critical  

Properties 
Acentric  
Factor 

BIC RMS 
Rang  

Variation 

Default PR3 LK LK KF 0.485260422 0 

EOS-PR PR LK LK KF 0.534117582 

0.212438491 

EOS-SRK SRK LK LK KF 0.697698914 

EOS-RK RK LK LK KF 0.524950261 

EOS-ZJ ZJ LK LK KF 0.366278359 

EOS-SRK3 SRK3 LK LK KF 0.619860615 

EOS-SW SW LK LK KF 0.490236014 

Crit. Pro.-C PR3 C LK KF 0.434776005 

0.04532993 
Crit. Prop.-RD PR3 RD LK KF 0.389446076 

Crit. Prop.-W PR3 W LK KF 0.492002072 

Crit. Prop.-P PR3 P LK KF 0.539034893 

Acentric Prop.-E PR3 LK E KF 0.442734145 

0.03183171 Acentric Prop.-T PR3 LK T KF 0.410902436 

Acentric Prop.-P PR3 LK P KF 0.673873215 

BIC-CP PR3 LK LK CP 0.437909819 −0.04735060 

 

 
Figure 4. Determination of sensitive parameters for Sample one. 
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Three EOS and two other correlations (Critical Properties, Acentric Factor, and 
BIC) were selected for the rapid construction of the PVT model, respectively (Ta-
ble 3). 

24 runs (combination of effective parameters) were done and the best model 
with minimum RMS was selected as a default model. To verify the method, all 280 
(7 × 5 × 4 × 2) runs were also performed. 

Figure 5 depicts the cumulative distribution function for Sample 1. Since the ver-
tical axis is probability, it must fall between zero and one. It increases from zero to 
one as we go from left to right on the horizontal axis. Intuitively, it is the “area so 
far” function of the probability distribution. 

 
Table 3. Selection of effective correlation for Sample one. 

Correlation Parameter 1 Parameter 2 Parameter 3 

EOS ZJ PR3 RK 

Critical Properties RD C - 

Acentric Factor T E - 

BIC CP KF - 

 

 
Figure 5. PVT default model position compared with other PVT models (Sample one). 

 
Position of conventional default (red point) is shown in Figure 5. Applying the 

proposed workflow and using effective parameters (Table 3) decreases the default 
model RMS significantly (blue point). 

All models existing between these two points are constructed by correlations and 
parameters, which were picked out from sensitivity analysis. Using sensitivity anal-
ysis, the optimal model before conducting tuning was achieved quickly. 

4.2. Fluid Sample Two 

Table 4 shows RMS and its variation range as a result of sensitivity analysis. For 
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Sample 2, PR3, SW EOS, Critical Prop-RD and W, C, Acentric Prop.-E and T have 
minimum RMS in their category. Three and two effective EOS, and other correla-
tions (Critical Properties, Acentric Factor and BIC) were selected to rapid construc-
tion of PVT model, respectively (see Table 5 and Figure 6). 

24 runs (combination of effective parameters) were done and the best model with  
 

Table 4. Sensitivity analysis of Sample 2. 

Sample two 

 EOS 
Critical 

Properties 
Acentric 
Factor 

BIC RMS Rang Variation 

Default PR3 LK LK KF 0.245514451 0 

EOS-PR PR LK LK KF 0.247671454 

0.032740995 

EOS-SRK SRK LK LK KF 0.278255446 

EOS-RK RK LK LK KF 0.570884529 

EOS-ZJ ZJ LK LK KF 0.431359348 

EOS-SRK3 SRK3 LK LK KF 0.257132594 

EOS-SW SW LK LK KF 0.24633074 

Crit. Pro.-C PR3 C LK KF 0.28813747 

0.036101523 
Crit. Prop.-RD PR3 RD LK KF 0.252035947 

Crit. Prop.-W PR3 W LK KF 0.217270362 

Crit. Prop.-P PR3 P LK KF 1.008775396 

Acentric Prop.-E PR3 LK E KF 0.271869996 

0.026355544 Acentric Prop.-T PR3 LK T KF 0.245514452 

Acentric Prop.-P PR3 LK P KF 6.162041322 

BIC-CP PR3 LK LK CP 0.240113473 −0.00540097 

 

 
Figure 6. Determination of sensitive parameters for Sample two. 
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Table 5. Selection of effective correlation for Sample two. 

Correlation Parameter 1 Parameter 2 Parameter 3 

EOS PR3 SW PR 

Critical Properties RD W - 

Acentric Factor E T - 

BIC CP KF - 

 

 
Figure 7. PVT default model position compared with other PVT models (Sample two). 

 
minimum RMS was selected as a default model. In order to compare the result of 
sensitivity analysis, all 280 (7 × 5 × 4 × 2) runs were performed (see Figure 7). 

For this sample, applying the proposed workflow and using effective parameters 
(Table 4) decreases default RMS. Similar to Sample 1, all models existing between 
these two points are constructed by correlations and parameters, which are picked 
out from sensitivity analysis for Sample 2. 

4.3. Fluid Sample Three 

Table 6 shows RMS and its variation range as a result of sensitivity analysis. SW and 
PR EOS, Critical Prop.-C and KL, Acentric Prop.-T and E have the minimum RMS 
in their category. Three and two effective EOS, and other correlations (Critical Prop-
erties, Acentric Factor and BIC) were selected to rapid construction of PVT model 
(Table 7). 

24 runs (combination of effective parameters) were done and the best model with 
minimum RMS was selected as a default model. In order to compare the result of 
sensitivity analysis, all 280 (7 × 5 × 4 × 2) runs were performed (see Figure 8 and 
Figure 9). 

Using effective parameters decreases default RMS significantly (Table 6). Sim-
ilar to previous samples, all models existing between these two points are constructed  
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Table 6. Sensitivity analysis of Sample three. 

Sample three 

 EOS 
Critical 

Properties 
Acentric 
Factor 

BIC RMS Rang Variation 

Default PR3 LK LK KF 0.258440063 0 

EOS-PR PR LK LK KF 0.169953169 

−0.0222629 

EOS-SRK SRK LK LK KF 0.236177159 

EOS-RK RK LK LK KF 0.47925448 

EOS-ZJ ZJ LK LK KF 0.400339469 

EOS-SRK3 SRK3 LK LK KF 0.212809663 

EOS-SW SW LK LK KF 0.160523622 

Crit. Pro.-C PR3 C LK KF 0.203013414 

0.071120675 
Crit. Prop.-RD PR3 RD LK KF 0.28154613 

Crit. Prop.-W PR3 W LK KF 0.260023063 

Crit. Prop.-P PR3 P LK KF 0.274134089 

Acentric Prop.-E PR3 LK E KF 0.269581614 

0.133589516 Acentric Prop.-T PR3 LK T KF 0.272864826 

Acentric Prop.-P PR3 LK P KF 0.40317113 

BIC-CP PR3 LK LK CP 0.163876217 −0.09456385 

 
Table 7. Selection of effective correlation for Sample three 

Correlation Parameter 1 Parameter 2 Parameter 3 

EOS SW PR SRK3 

Critical Properties C KL - 

Acentric Factor T E - 

BIC CP KF - 

 
by correlations and parameters which were picked out from sensitivity analysis. 

The results from the three gas condensate reservoirs confirm that applying the 
proposed methodology can significantly reduce the number of simulation runs—
by more than 10 times. 

5. Discussion 

The results of the sensitivity analysis indicate that the equations of state (EOS) 
have a significant impact on the accuracy of PVT modeling for gas condensates. 
Sample one showed that the PR3 and ZJ EOS provided lower RMS values, indi-
cating better performance. This highlights the importance of selecting the  
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Figure 8. Determination of sensitive parameters for Sample three. 

 

 
Figure 9. PVT default model position compared with other PVT models (Sample three). 

 
appropriate EOS based on the fluid’s characteristics. 

In Sample two, the PR3 and SW EOS also performed well, confirming the trend 
observed in Sample one. The significant variation in RMS values based on critical 
properties and acentric factors suggests that these parameters should be carefully 
selected to enhance model accuracy. 

Sample three’s results reaffirm the necessity of a systematic approach to sensi-
tivity analysis, with the SW EOS providing the best fit. The combination of effec-
tive parameters identified through this analysis can lead to more reliable PVT mod-
els, reducing the need for extensive simulation runs. 

Overall, the proposed workflow demonstrates a robust methodology for rapid 
PVT model construction. The significant reduction in RMS across samples illustrates 
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its effectiveness in optimizing gas condensate modeling. 

6. Conclusions 

This study developed and implemented a novel workflow to efficiently select the 
best default PVT model before tuning, addressing the challenges posed by high-res-
olution compositional models. In cases where large numbers of components, such 
as detailed hydrocarbon fractions or non-hydrocarbon gases, need to be modeled, 
the computational cost can become prohibitive. Instead of using all available PVT 
correlations, which would require extensive computational resources, the proposed 
method significantly reduces the number of runs by focusing on the most relevant 
parameters for each PVT sample. 

By applying sensitivity and risk analysis techniques, the workflow identifies the 
optimal default model with minimal computational effort, even when dealing with 
complex, multi-component fluid compositions. The results demonstrate that this 
approach reduces the number of simulation runs by a factor of 10 while maintain-
ing accuracy in model selection. Furthermore, the analysis reveals that relying solely 
on generic correlations from existing literature can lead to improper default model 
choices, particularly in cases of high-resolution compositions. This highlights the 
necessity of adapted workflows for accurate PVT model selection. 

Beyond PVT modeling, this methodology can be extended to other areas, such 
as reservoir simulation models, well modeling, and production forecasting, where 
efficient parameter selection is critical to reducing computational costs while en-
suring accurate results. The approach offers a practical solution for streamlining 
the modeling process in various aspects of reservoir engineering, particularly in 
complex and time-consuming scenarios. 
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